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Large Schottky-type heat capacity anomalies in liquid 
alkali group lV alloys 
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t Solid State Physics Laboratory, 9747 AG Nijenborgh 4, Groningen, The Netherlands 
1. Argonne National Laboratory, 9700 South Cqs Avenue, Argonne, U 60439, USA 

Received 22 March 1995 

Abstraci. The heat capacities of some liquid alkali-lead and alkali-tin alloy; exhibit anomalous 
behaviour as a function of both composition and temperature. The equiatomic composition is 
characterized by a large excess heat capacity which depends strongly upon temperature. Tabring 
into acconnt the thermodynamic properties and structural measurements, we propose a model 
for these alloys based on a dissociation scheme of polyvalenily charged anions into either fm 
atom. ions or some other small entities. 

1. Introduction 

A large number of experimental as well as theoretical investigations have been reported on 
the electronic and atomic shucture of liquid alkali group IV alloy systems: van der Lugt and 
Geertsma (1987), Saboungi et ai (1990a), van der Lugt (1991). The various experimental 
data like resistivities, Knight shifts, thermopowers, thermodynamics and structure on these 
alloys can be explained assuming the existence of rather long-living polyanions-so-called 
Zintl ions-in the liquid state. In this paper we present further evidence for this interpretation 
with a special emphasis on the thermodynamic results. 

The heat capacity of the equiatomic alkali Pb compounds (Saboungi et al 1988, 1990a, 
b) takes dramatically large values just above the melting points, in the range of 60 to 70 
J m0l-I K-l, and decreases with temperature. The presence in the liquid of structural 
units, dissociating gradually with temperature, could explain qualitatively and quantitatively 
such a behaviour. Zintl ions were known to form in the corresponding solid intermetallic 
compounds and, based on the structural measurements, it was suggested that these survive 
the solid-liquid transition. The stability of these ions, schematically represented by I@, 
where M = Pb are located on a regular tetrahedron surrounded by an oppositely oriented 
and positively charged alkali metal tetrahedron, was shown to depend not only on the 
temperature of the liquid, but also on the nature of the cation. 

Saar and Ruppersberg (1987, 1988) observed a similar behaviour of the heat capacity in 
the liquid alloy system L&Pbl, which exhibits a strong peak of about 26 J mol-' K-' close 
to c = 0.8. Near this composition the excess heat capacity first decreases on heating, and 
then remains constant and/or even increases for T > 1 I00 K. The decrease is ascribed to a 
reduction in the ionic short-range order and the increase to its enhancement. Similarly, in 
Se,-TeI-, liquid alloys, Takeda et ai (1985) observed a Schottky-like excess heat capacity 
which attains a maximum value of about 30 J mol-' K-' for c = 0.4. The change of the 
average coordination number from 2 to 3 with increasing temperature is responsible for 

0953-8984/95/254803+18$19.50 @ 1995 1OP Publishing Ltd 4803 



4804 

this behaviour. Finally, in the metal-molten-salt system Bi-BiIs, Ichikawa (1984) found 
that the excess heat capacity takes large values of 100 to 120 J mol-’ K-’ over a broad 
composition range (up to 50% Bi in BiIs), resulting from the presence of large covalently 
bonded Bi polycations. 

The question of the stability of the Zintl ions upon melting is intimately related 
to the charge transfer, which is mainly responsible for the formation of complex ionic 
arrangements. The alkali-tin alloys are good candidates for studying the charge transfer 
since the smaller size of Sn and its large electronegativity lead one to expect that the 
corresponding Sn:- would be more stable than Pbj-. This trend has been confirmed by 
the results of electrical resistivity measurements for alkali-lead alloys (van der Lugt and 
Geertsma 1987), and for alkali-tin alloys (Xu et al 1992). The structural results obtained 
by neutron diffraction on NaSn, KSn, and CsSn provide evidence for the presence of SI$ 
in the liquid and suggest that they are more stable than the corresponding Pb:- (Reijers et 
a1 1990). 

In this paper we report the first comprehensive and complete interpretation of the heat 
capacity of these alloys. The experimental details of the specific heat of liquid alkali-tin 
alloys will be published in  a separate paper (Johnson et al 1995). The dependence of the 
heat capacity upon temperature is determined accurately and analysed using a model based 
on a dissociation scheme of the Zintl ions with temperature. The model leads to an estimate 
of the relative concentration of M:-, the free M and alkali ions. 

W Geertsma and M-L Saboungi 

2. Theory 

Consider one mole of the liquid alloy system &MI-, (A = alkali, M = group N element). 
We assume that the one mole of liquid is formed of c moles of A, (1 - z)(l - c)/4 mol 
M:-and z ( 1 -  c) mol M, where z is the degree of dissociation of the clusters. The binding 
energy, Ec, defined by the reaction 

M:- $4M + E, 

depends on temperature and composition and z :  E, = E: + Etz + . . ~. Following Akdeniz 
and Tosi (1987). the total free energy of this system is 

where Eclusrrr = - (1  - c)(l - z)/4E,. The configurational entropy, S,, is approximated 
by an ideal random distribution of different particles (ions and clusters): 

S, = +[(I -c)( l  -z)/41n(l -c)( l  -z)/4 t c lnc  
+z(l - c)Inz(l - c) - (1 +3c + % ( I  - c))/4]. (2.3) 

The terms Fhs + Fco.f are contributions to the free energy from the approximation of the 
particles as charged hard spheres: they represent the medium contribution. Changes in the 
free energy due to changes in the number of free electrons are not taken into account, except 
in so far as in E,. The remaining three terms Frr, F,,,, and Fvibr are the translational, 
rotational, and vibrational contributions to the free energy, respectively. Classical ideal 
solution expressions can be used to define F:, and F,,, (Moore 1968). For Fvib,, one has 
only to include the contribution of the clusters; we approximate, unless specified otherwise, 
the vibrational spectrum of the tetrahedron by one characteristic frequency U,. So at high 
temperatures Ow, << kBT),  the vibrational partition function becomes 

(2.4) 
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where the exponent is the total number of degrees of vibrational freedom d, = 6. 

finds 

(1 - z)  

The degree of dissociation z is obtained from minimization of F with respect to z. One 

(2.5) 

This equation is similar to the usual law of mass action. The preexponential factor, A M .  is 

A M  = A & ( h w , / k ~ ) ~  (K’) (2.6) 
where 

A; = dA6xu,m6,/(m3,12(2x)3(A%CN:,)’12) (K-3) (2.7) 

Ea = 4/(1- c)J(Fhs + Fcour)/Sz (2.8) 
where m, is the molecular cluster mass and C2 the average atomic volume, m~ the atomic 
weight of M, and A, B and C are the moments of inertia; U, is the number of rigid rotations 
of the molecule, and 1 = (kg/(2nh2N~,))1~Z = 5.729 x IO-’ g-’l2 K-’/’ A-’. This 
quantity (Ea)  is the change in the free energy of the liquid due to the dissociation of the 
clusters. It is the liquid lattice potential at the position of the cluster. Via this term any 
iodparticle can influence the equilibrium, i.e. the degree of dissociation. Using the mean- 
spherical approximation (MSA) for the charged hard-sphere contribution one can show, 
numerically, that E, is only weakly dependent on the degree of dissociation (see Akdeniz 
and Tosi (1987, 1990)). So, just as for the bare binding energy of the cluster, we assume 
that E, = Erz + zE:,, and define an effective binding energy of the cluster as appearing 
in the exponential of equation (2.5): 

so that Eo = E,“ - E: + EZx and E1 = 2E: + Ejx (see table 1). 

-- (4z)4 - AMT3(4 / (1  -c))’exp[-(E, + Eex - (1 -z)SE,/Sz)/kgT]. 

and 

E g  = E, - (1 - z ) E J  + E, = Eo 4- ZEI (2.9) 

Table 1. The binding energy (eV) of Sn:- and Pbj- teVahedra (a) derived from the best fit to 
specific heat data (see the text and table 4). (b) derived from lattice energy differences (taken 
from von Schering 1981) and (c) as calculated within a simple Hiickel scheme (GeenSma 
1995). 

Case: KSn RbSn CsSn KPb RbPb CsPb 

a 1.8 2.0 2.0 1.6 1.5’ 1.7 
b 1.7 1.80 1.97 1.40 1.54 1.67 
C 5.70 5.70 5.70 3.90 3.90 3.90 

We will treat the temperature-independent part of the pre-exponential factor (AM) and 
the effective binding energies (EO, and E l )  as fitting parameters to the experimental data. 
The preexponential factor, excluding the vibrational part, A;, can be calculated, and its 
values for the various systems are grouped in table 2. 

Taking into account the influence of the liquid medium and of the translational, rotational 
and vibrational degrees of freedom we get for the specific heat (see appendix A for details 
of the derivation): 

1 - c  
4 

-TS2Fcoui/ST2 + R - [ ( l  - z)(3 - D) + 3/2(4z + c)] (2.10) 
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Table 2. The pre-exponential factor A$ = ( R ~ M / R M M ) ~  x 3.65 x mol3 K-3; mM is 
the atomic mass of M, R is the average atomic volume. The values in parenthesis are calculated 
using the following approximaion for the average atomic volume of NaSn-type compounds: 
R = (50/32)(Rfb)3, where R?b is the sum ofthe univalent atomic radii taken from Pauling 
(1964). The average atomic volumes R and interatomic distances in the tetrahedra RMM are 
from Reijers (1990). Note that this factor has still to be multiplied by (Im,/k,)6 to get A M  
(equation (2.6)). 

NaSn KSn RbSn CsSn NaPb KPb Rbpb CsPb 

AO, - 15.19 - 31.71 28.8 68.88 97.68 145.52 
(2.17) (7.94) (12.64) (22.08) (14.56) (54.40) (82.80) (140.00) 
n(A3) - 43.5 - 55.6 32.5 46.1 52.1 59.5 
RAM (A) 2.40 2.82 2.97 3.16 2.55 3.01 3.16 3.35 
RMM (A) 2.83 2.98 2.98 2.98 3.14 3.33 3.35 3.35 

where 
D = dInZ,ib/dT = C d ; ( h o j / k B T ) e x p ( f r o ; / k s T ) / [ l  - exp(-hwi/kBT)ldi. 

For hoi << ksT, which is the case in this work, D = 6, the number of degrees of freedom of 
vibration of the tetrahedron (do = 6). The specific heat depends on 6E,/6z via a term in the 
denominator of equation (A16). which does not appear in the equilibrium equation (equation 
(2.5)). It is impossible to separate the bare cluster binding energy E," from the medium 
contributions (E, and E:). The first term in equation (2.10) is due to the dissociation of 
the tetrahedra (dz/dT); and the second term arises from the change in contribution of the 
various degrees of freedom of the alloy components. The last term gives an appreciable 
but nearly temperature-independent contribution to the specific heat. Since the dissociation 
of the tetrahedra is occurring over a relatively small temperature range of the order of 
400 K, the change in degree of dissociation (I) is large, and the first term gives the largest 
contribution to Cc. It will show up as a peak, or Schottky-like anomaly, in the heat capacity. 

One can show numerically, using the MSA, that GE,/ST is small, and negligible w.1.t. 
Ec/ksT. Similarly, 6EeX/6z, which can be either positive or negative, is small if we assume 
that the packing fraction does not vary with the degree of dissociation. 

2.1. Analytical analysis of the specifrc heat data 

The maximum in the heat capacity occurs at T,,, when approximately half of the clusters 
are dissociated (z c 112). Thus one can write for Es: 

i 

-- -In A M  + ln2 - 3 h ( l  - c) - 3InT,, E B  

kB Tma 
(2.11) 

where ED = EO + E1/2. When Ea increases and AM is constant, T,, is expected to 
increase, i.e. the maximum value of the heat capacity occurs at higher temperatures when 
the binding energy increases. When AM increases and Es remains constant, T,, should 
decrease. 

From equation (2.1 1) we derive the maximum value of the heat capacity: 

(2.12) 

The value of e;,, increases with the ratio E8/ksTm,. 
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We now proceed to calculate the parameters of this model, assuming that the binding 
energy does not depend on the degree of dissociation. We also neglect, for simplicity, the 
last term of equation (2.10). This will result in a small overestimate of the binding energy. 
AM and EB can be Calculated by using the experimental value of Tmax. Such a procedure 
applies only to the stannides, where a maximum is observed. 

The results in table 3 show that the binding energy of Sn4 are nearly independent of 
the alkali except for NaSn where an appreciably smaller binding energy is obtained. These 
values compare well with those determined from lattice data (von Schnering 1981), and 
are about a factor two smaller when compared with the binding energy of these charged 
tetrahedra calculated within a simple Huckel scheme (for details: Geertsma 1995). 

Table 3. The parameters of the theory are fitted Io the analytical expression at the maximum 
of the heal capacity of ASn compounds. Experiment4 values are from Saboungi (1995) and 
Johnson et d (1995). A T  is the width of the Schottky anomaly. 

Na K Rb Cs 

Tm, (K) 910 1210 1235 1310 Experimental 
C;,, (I mol-' K-') 10 42.6 37.4 34.6 Experimental 
EslksTma 12.81 2324 21.91 21.24 Equation (2.12) 
E 8  (ev) 1.00 2.42 2.34 2.40 
1"AM 30.48 41.16 40.55 40.00 Equation (2.11) 
4 4  2.17 7.94 12.64 22.08 Equation (2.7) 
0, (meV) 12 64.3 48.6 40.5 Equation (2.6) 
AT (K) -400 -250 -350 -400 Expsrimentzl 

From A M ,  we can derive characteristic vibrational frequencies of these tetrahedra. The 
frequency is very small for NaSn (17 meV); it decreases from about 64 meV for KSn 
to 41 meV for CsSn. We found a similar decrease in the calculated frequency of the 
breathing mode in the sequence KSi (50 meV), RbSi (43 mew, CsSi (30 meV), for the 
Si4& tetrahedra (Geertsma 1995). If a linear dependence of the binding energy on z is 
assumed, then EB decreases with z.  Fitting to the specific heat maximum, one finds that 
when this correction to the binding energy increases, a smaller ER and AM are needed and 
consequently a smaller characteristic vibrational frequency is obtained. 

Another method is to assign a reasonable value for the characteristic vibrational 
frequency, i.e. fio = 80 meV. For RbSn we obtain (Tmox = 1210 K AM = 1.126 x 10"): 

(2.13) 

Similar values are obtained for CsSn and KSn. For the equiatomic alkali tin alloys we find 
that T,,, and Es increase in the sequence: KSn (1 170 K, 2.3 eV), RbSn (1210 K, 2.4 eV), 
CsSn (1310K, 2.6 ev). Substituting the value found for EB/kBTmax we find C:,, = 40.3 
J mol-' K-' remarkably close to the measured values. Cia, for ASn decreases slightly 
with increasing weight of the alkali, which is in agreement with the model, where for the 
same sequence AM increases and the ratio Es/kBTmox decreases. 

In the equiatomic APb systems, the heat capacity decreases strongly and continuously 
with increasing temperature. One could deduce that the temperature where the maximum in 
the heat capacity would occur is below the melting point in the metastable subcooled liquid 
and expect that its value is larger than that of the alkali-tin compounds. This can only be 
explained within our model if we assume that AM is slightly larger than for the tin alloys, 
and that the binding energy of the lead tetrahedra is smaller. It follows that o, is nearly 

= 44.3 - 3 In T,, = B.O. 
kBTma 
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Table 4. Binding energy (Eo. E l )  and pre-exponential (la A M )  parameters of the model fined 
to che experimental curves. The chmcteristic frequency of the tetrahedron is Ao. The error is 
defined as the root mean square deviation of the fined curve from the experimental one. The 
fits ye performed an a set of experimental points with a tempenlure step of 25 K, The fits for 
the various compounds are in the following t e m p ”  range.: for KPb: 850-1 125; RbPb: 
875-1175; Cspb. 925-1200; KSn: 1125-1500, RbSo: 1150-1500; CsSn: 1175-1500 K. For 
more details see the lex(. 

Eo EI Bo. 
l n A y  (eV) (ev) (mv) Error Remark 

KF’b 44.6 1.63 0.12 70.7 0.068 Fined to all temperat- 
42.9 1.62 0 53.3 O.Ml Fitted with El = 0 
32.0 1.25 -0.43 8.8 0,100 Bo, from Price and Sabaungi (1991) 

35.9 1.41 -0.30 16.9 0.096 See the previous remark 
RbPb 38.3 1.56 -0.17 23.4 0.061 Pitted lo all temperatures 

41.3 1.62 0 38.5 0.014 Fined with El = 0 
CsPb 39.0 1.69 -0.12 24.6 0.091 Fined to all temperatures 

39.2 1.68 -0.11 25.4 0.111 Weighted from975-1100 K ( lox)  
41.0 1.73 0 34.3 0.092 Fitted with E l  = 0 
41.1 1.73 0 34.9 0.092 El =0, weighted from 915-1100 K ( 5 x )  
31.5 1.40 -0.54 7.2 0.37 hoc from Price and Saboungi (1991) 

36.9 1.62 -0.25 17.6 0.075 See previous remark 

34.2 1.89 -058 17.9 0.177 Weighted from 1175-1250 K (100%) 
40.8 2.27 0 53.8 0.588 El = 0, weighted from 1175-1250 K ( 1 0 0 ~ )  

35.6 1.99 -0.42 20.9 0.045 Weighted from lllS-L300 K (100%) 
39.6 2.16 0 40.8 0.185 El  =O. weighted from 1175-1300 K (100~) 

36.0 2.07 -0.36 20.4 0.150 Weighted from 1250-1350 K (100%) 
39.4 2.30 0 35.9 0.284 Et = 0, weighted from 1250-1350 K ( 1 0 0 ~ )  

KSn 33.1 1.84 -0.66 14.9 0.130 Fitted Lo all temperatures 

RbSo 36.1 2.02 -0.38 228 0.011 Fined to all tempwatures 

CsSn 35.4 2.04 -0.46 18.5 0.1 IO Fitted to all temperatures 

the same as that of the tin tetrahedra. 

2.2. Numerical m I y s i s  of the specific heat dofa 

The effective binding energy and the preexponential factor were used as primary fitting 
parameters and determined so that the maxima of the theoretical and experimental curve 
coincide. 

(a) Alkali plumbides. We first calculated the variations of the binding energy with 
temperature for various values of the pre-exponential factor. We neglected El in the 
denominator of the specific heat (equation (2. IO)). Within a nearly temperatureindependent 
binding energy approximation the best fits were obtained for values of AM corresponding to 
a characteristic frequency w, in the range 30-50 meV, which is similar to those obtained for 
the alkali stannides. The deviations of &5% are largest near T,, and in the high-temperature 
tail of the anomaly. One can improve the fit by introducing a small dependence of the 
binding energy on z of about -0.17 eV for RbPb and -0.12 eV for CsPb. The remaining 
deviations can be due to order-disorder phenomena, not considered in our model, occurring 
just above T ,  and in the high-temperature tail of C p .  From these fits we find that, as 
expected, the binding energy of the Pb:- tetrahedra increases slightly from 1.6 eV for KF’b 
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and RbPb to 1.7 eV for CsPb. Finally, the degree of dissociation is very high (see figure 
2): 0.8 for KF'b. 0.7 for RbPb, 0.65 for CsPb just above T,, and at 1000 K it is higher, at 
least 0.9 for KF'b and RbPb and 0.8 for CsPb. 

W Ceertsma and M-L Saboungi 

I1Oo T[KI 1500 

,>+=. 
Figure 2. Degree of dissociation (x) as a function of temperature 
for the alkali plumbi des. A: QjPbo.$ In AM = 42.9, EO = 1.62 
(a), ln AM = 44.6, EO = 1.63, El = 0.12 (b). B Rb~,rPba.s: 
l n . 4 ~  = 41.3, EO = 1.62 (a); l n . 4 ~  = 38.3. Eo = 1.56, El  = -0.17 
(b). C: Cs~pbo .$  lnAv = 40.1, Eo = 1.73 (a); InAM = 39.0, 

.5 >.-I 

X 
0 

im 
1100 1500 EO = 1.69, El = -0.12 (b). 

(b) Alkali sfannides. Following the same procedure as above, we calculated the binding 
energy as a function of temperature from the specific heat data for various values of AM. 
We neglected the El-term in the denominator of equation (2.10). For each temperature, 
two values of the binding energy fit the data and form two separate branches. The lower 
one usually has a maximum, while the upper has a minimum. The temperature dependence 
of the binding energy is much larger than for the plumbides. The range of binding energy 
values of the lower branch is about 0.3 eV. The upper branch increases to rather high 
values with increasing temperature. The binding energy values are of the same order as 
obtained above from the analytical solution. In figure 3 we have plotted the experimental 
and calculated excess specific heat for the alkali stannides. For K, Rb, and Cs, the theoretical 
curve is above the experimental one: At high temperatures the dissociation is faster than 
described by the model with constant binding energy. We also fitted the data using a 
binding energy that depends on z. The results of these fits are shown in figure 3, and the 
corresponding degrees of dissociation in figure 4. As expected, the binding energy increases 
slightly from 1.8 eV for KSn to 2.0 eV for (3%. These binding energies are slightly larger 
than for the plumbides but the degree of dissociation is smaller and independent-as for 
the plumbides--of the final model parameters (see figure 4). The vibrational frequencies 
derived from the pre-exponential factor are slightly smaller than those for the plumbides 
(see table 4). Overall,, the quality of the fits of the stannides is not as good as for the 
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plumbides. This may result from terms of higher order in the degree of dissociation in the 
expansion of the binding energy. Note that the first-order binding energy E1 is much larger 
than for the plumbides. 

(c) Composition dependence of C,. A pronounced peak has been observed near the 
equiatomic composition in the specific heat of K-Pb and R b P b  by Sahoungi et al (1988). 
Using the parameter values derived for equiatomic RbPb we have calculated the composition 
dependence of the specific heat for various temperatures. We found that a composition 
independent binding energy cannot explain the observed specific heat, because the tetrahedral 
clusters are most stable at the equiatomic composition. In a tight-binding picture of the 
bonding of these clusters all bonding and antibonding levels are occupied for &M, and so 
for this composition and in the alkali-poor region. the clusters are unstable. By assuming 
that the binding energy can take the form 

EB = E B O  + c(1 - c)EBl (2.14) 

where the parameters are chosen such that E B  vanishes for the A&l compound, and the 
binding energy at the equiatomic composition is equal to the one defined earlier in equation 
(2.9) for z = 0.5, so in terms of the binding energy parameters defined above we get: 
EBO = -16(Eo+0.5 E1)/9 and EBI  = - ~ E B O / ~ .  This determines EBO and E B I .  For Rb- 
Pb we have calculated on this basis the specific heat (figure 5),  which shows the maximum 
reported experimentally. The peak decreases with increasing temperature. The fraction of 
clusters is plotted in figure 6. As expected, it peaks around the equiatomic composition; 
far from this composition it decreases fast, and for c > 0.6 and c < 0.4, nearly all clusters 
have dissociated. 

(d) Discussion. The ratio of the vibrational frequencies found for tetrahedra by Kliche et 
al (1987). is about: 1 (E):1.33 0):1.66 (A). Thii differs appreciably from the ratio (1:&:2) 
that one would obtain when only the bond-stretching force constant is taken into account. 

Using this ratio we find that the characteristic frequency is related to the breathing 
mode frequency of the free tetrahedron by: W A ,  = 1.42~0,. The breathing mode vibrational 
frequencies derived from the pre-exponential (AM) when fitted to all temperatures (see table 
4) are hoA(Pb:-) = 101 (KPb), 55 (RbPb), 34 (CsPb) meV and hOA(Sn:-) = 21 (KSn), 
32 (RbSn), 27 (CsSn) meV. The values for the breathing mode of the stannides compare 
well with those found for the isoelectronic Sb4 @@A, M 30 meV) in the gas phase (Kliche 
et 01 (1987)) although the frequencies of the charged Snj- tetrahedra are somewhat smaller 
than found for the isoelectronic Sb4 molecules. A similar trend in the breathing mode 
frequencies has been found for the solid-state clusters Si:- (60 meV) and Ge:- (33 meV) 
compared with their analogous gas-phase Pd (76 meV) and As4 (44 meV) respectively (see 
Biirger and Eujen 1972). 

Toukan et 
ai (1990) found from a MD study the following breathing mode frequency for Phi-: 
hoA, M 21 meV in liquid KPb. This frequency is somewhat higher than found for the 
isoelectronic Bh tetrahedron @CO* = 18.6 meV). From an analysis of inelastic neutron 
scattering measurements on liquid KPb and CsPb, Price and Saboungi (1991) found 12.5 
and 10.2 meV in KF'b and CsPb, respectively, for the breathing mode frequencies of the Pb 
tetrahedron. Recently similar results have been obtained using the Car-Paninello method on 
liquid CsPb by de Wijs (1995). He finds a peaked structure in the Pb velocity autocorrelation 
function extending from 10 meV to 20 meV. This implies that the breathing mode of the 
Pb tetrahedron is at about 20 meV, in agreement with the findings of Toukan et al (1990). 
The Cs velocity autocorrelation function peaks at a lower energy from 5 to about 15 meV. 

Next let us consider the vibration frequencies of the Pbf tetrahedra. 
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Figure 4. The degree of dissociation (z) as a function of temperature corresponding to the 
specific heat of figure 3. 
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Figure 5. Composition dependence of h e  specific heat 
of Rb,Pb,-, for various temperatures: 875 (a), 900 @), 
950 (c). IOW (d), 1050 (e). 1100 (0. The parameters 
used are: In A M  = 38.3, Em = -2.66. EBI = 16.66. 
E1 = -0.17 eV. 

Figure 6. Composition dependence of the degree of 
dissociation of Rb,Pbl-. far various tempes'ahws 815 
(a), 900 (3). 950 (c). 1000 (d), 1050 (e). 1100 (9. The 
parameters used are: ln AM = 38.3. EBO = -2.66, 
En1 = 16.66. E t  = -0.17 eV. 

We do not have a clear explanation for the difference of nearly a factor of 8 for KPb 
and nearly a factor of 3 for CsPb between our thermodynamically determined vibrational 
frequencies and the ones determined from inelastic neutron scattering data. W e  can, 
however, make the following remark. From a close examination of the inelastic neutron 
data of Price and Saboungi and comparing these with the calculations of de Wijs on CsPb, 
we conclude that the frequencies, as determined from the neutron data, are the frequencies 
of the Cs tetrahedron capping the four faces of the Pb tetrahedron. Also, these will have 
the same frequency ratio as for a normal tetrahedron. At higher energy there are indications 
for peaks at 14.4, 18.3 and 25 meV, with the ratio 1:1.31.7 as expected for a tetrahedron. 
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So the breathing mode frequency of the Pb tetrahedra derived from inelastic neutron data 
is about 25 meV instead of 10.2 meV. 

What would happen when we fitted the plumbides using the vibrational frequencies 
determined by inelastic neutron diffraction? With the original interpretation of Price and 
Saboungi the values of In A M  have to be shifted by -10 for Wb and -7 for CsPb relative 
to the fit to all temperatures in table 4. In the case where one interprets the weak bands 
at higher energy in the inelastic neutron spectrum as the Pb4 modes one has to shift the 
pre-exponential factor by -8.5 for KPb and -2 for CsPb. In order to get a decent fit one 
has to take a smaller value for the binding energy than that given in table 4 (see below 
equation (2.1 I)). The results of the fits based on these vibration frequencies are in table 4. 
In order to get a good fit it is essential to take into account the dissociation dependence of 
the binding energy. Note the large error in the case of CsPb when we use the vibrational 
frequencies from the low-energy interpretation of the inelastic neutron spectrum. 

The small increase in stability of the Pb tetrahedra with the heavier alkali is as we 
expected. Also the difference of the stability of the Sn and Pb tetrahedra of about 0.3 to 
0.5 eV is as expected. 

Note that when we assume that T,, does not change much by changing the binding 
energy, one can derive from equation (2.11) and the fitted parameters in table 4 the change 
in EO due to changes in In AM. In the case where we use the high-energy interpretation for 
the vibrational spectra, one calculates for KPb (TmaZ = 720 K) a change in EO of -0.42, 
and for CsPb (Tmoz = 900 K) a change in EO of -0.23 eV, which gives for both KPb 
and CsPb a binding energy, E B  (see equation (2.11)), of about 1.2 for KPb and 1.46 eV 
for CsPb. So these analytical expressions give a good indication of the magnitude of the 
binding energy Eo. 

We also have to mention the possibility of larger 3D networks of threefold-coordinated 
Pb.. Such a structure has been found in the reverse Monte Carlo analysis of KPb (McGreevy 
1995) and the simulations of de Wijs (1995) on CsPb. In the latter one also finds clear 
indications for isolated Pb tetrahedra. In our model the structure of the background medium 
in which the tetrahedrons are immersed is rather irrelevant. The binding energy of the 
tetrahedron we find is, obviously, with respect to this background. Whether there is still 
some bonding between the Pb/Sn ions is included in EB. 

From the discussion at the end of the previous section we conclude that this model is 
even able to predict the vibrational frequencies when the maximum of the Schottky anomaly 
is above the melting temperature. The other way around would be to calculate from equation 
(2.11), using known vibrational frequencies, the preexponential factor, and from this the 
temperature where the Schottky anomaly has its maximum. The binding energy could be 
found by some reasonable extrapolation of the stannides and plumbides to the gemanides 
and silicides. In order to be able to observe temperature corresponding to the maximum 
(TmOx) in the Schottky anomaly, the binding energy EB has to be larger than E B ( T , , ~ ~ ) .  In 
order to get the maximum 300 K above the melting temperature of the alkali germanides 
(Moffat 1984) the binding energy is: for NaGe 1.9, for KGe 2.0, for RbGe 1.9, and for 
CsGe 1 .8 eV. These values for the binding energy, which are the minimum values required 
to push the Schonky anomaly above the melting temperature, are somewhat smaller than the 
binding energies one expects for Gej-. So for the alkali germanides we expect the Schottky 
anomaly far above the melting point. For example, taking a reasonable value for the binding 
energy of the germanide tetrahedron of 2.5 eV, we obtain maxima of the Schottky anomaly 
at 2600,2270,2160,2050 K for the Na, K, Rb and Cs germanide respectively. 

(e) The Darken stabilifyfuncrion Finally, the excess stability (Darken 1967), which 
is a measure of the thermodynamic rigidity of the system, has been evaluated within this 

W Geertsma and M - L  Saboungi 
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model; see appendix 3. There are three conaibutions due to (i) the salt-like medium; (ii) the 
dependence of the binding energy on the degree of dissociation; and (iii) the dissociation 
of the clusters. The latter gives a negative contribution to the excess stability, and has a 
minimum at nearly the same temperature as where the excess specific heat has a maximum. 
This minimum becomes especially deep when the specific heat maximum is large, and when 
there is a strong coupling between cluster and medium as represented by E,. In such a case 
large fluctuations in the composition are possible. This probably explains the unexpectedly 
small value of the excess stability found for the equiatomic alkali plumbides by Tumidajski 
et a1 (1990). 

3. Conclusions 

The experimental heat capacities were determined at constant pressure, while the theoretical 
ones are calculated at constant volume. 

The experimental specific heat decreases much more quickly with temperature than 
predicted by the model with a constant binding energy. We can explain this fast decrease of 
the specific heat by assuming that the effective binding energy ( E B )  depends on the degree 
of dissociation (2). When taking this into account we obtain much better fits, and we 
find that the effective binding energy of the tetrahedra decreases with increasing degree of 
dissociation. Such a decrease in binding energy with degree of dissociation is not unlikely, 
because of the fact that the medium becomes more metallic when the dissociation degree 
increases, screening the liquid lattice potential and slightly destabilizing the tetrahedra. The 
fits of the plumbides are of a better quality than those of the stannides. This is probably 
due to fact that for the plumbides one fits only to the high-temperature tail of the Schottky 
anomaly, while for the stannides one has to fit over the entire anomaly. The effective binding 
energies found from these numerical fits are (for z = 0): Eo(Pb!-) = 1.65 f 0.1 eV and 
E&$-) = 2.0 f 0.2 eV. 

The binding energy increases slightly in the sequence K, Rb, Cs. in agreement with the 
model proposed by Geertsma et a! (1984). When relatively stable intermediate clusters, 
like pairs or triplets, are present, then one would expect a broadening of the specific heat 
peak. This is clearly not observed in the plumbides. In the stannides, a higher degree of 
anion association than into only tetrahedra can be one of the causes of the deviation between 
our model and the experimental data. Higher associates can give a faster decrease of the 
specific heat, assuming that the intermediates of the dissociation are relatively less stable. 
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Appendix A. The general specific heat expression 

Write for the h e  energy: 
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where G([x i ) ,  T )  contains the influence of the medium on the non-interacting particles i. 
The equilibrium condition is 6F/Sz = 0. The coefficient of z in xi is ni: (6x;fGz) = ni. 
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. .. . 

6Xi In z i ) ]  + E. (A2) 
6Z 6Z 

1nxiN - - ~n zi -xi- 
S X i  

62 62 
F = [xi? + E ~ -  + RT 

The equilibrium condition at constant temperature becomes: 

The specific heat is given by 
62F 

C p  = -T- 
6 T2 

Let us first cafculate GFIST: 

After some rearrangements using equation (AI) this can be written as: 

(A6) 
The first term vanishes when the system is in equilibrium. Also the temperature derivative 
of the first term vanishes under equilibrium conditions. Next we have to calculate 6’F/6T2. 
Define for convenience B = (6G/6T),, Ai = (6Ei/6T),; Qi = 6lnZi/6T.  We get 

6T A i - + x i - - ~ i R Q i - R T x i -  
6’F SB 6 X i  SA; 

6T 6T 

6 In Zi Sxi 
i 6T 6 T ’  

- R T ~ - -  

Use 

and similar for (6Ai/6T).  ?his equation can then further be written as 
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From the equilibrium equation we can derive an expression for (6z/6T): 
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This can be solved for Sz/6T: 

Now note that the numerator is the same as the coefficient of Sz/ST in equation (AS). So 
finally we get for the specific heat 

Some of the terms can be evaluated at high temperatures: 

and 
S Q i  

6T T 
du,i + d,,i + 3/2 2Qi + T -  = 

where the factor 3 comes h m  the iranslational degrees of freedom of particle i ;  dn,i = 
SInZ,i~,(i)/ST is the number of vibrational degrees of freedom. 

When we neglect the second derivatives except aZG/azZ in the numerator in the 
evaluation of the specific heat we get 

Cp = RCxi (d , , i  + d , i  + 3 / 2 )  
i 

+ R [ c ( s + n i ( d ; + 3 ) + - -  xi S E ' )  +- 1 ( S G ) T ] z  - 
RT Sz RT 6z 

For the tetrahedral equilibrium we have (subscript 1 is cluster, 2 is metal): nl = -(1 -c)/4 
and nz = 1 - c. Furthermore define the excess binding energy (see equation (2.8)) 
E, = 4/(1 - c)(SG/Sz),. We expand the cluster binding energy (see below equation 
(2.1)) E, = E," + zE:, .and and excess binding energy E, = + z E:x. Note that there 
is a change in sign for the cluster binding energy as defined in this appendix and used in 
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the main text. Let us define an effective binding energy EB = E, - ( I  - z)E: + Etx and 
write E B  = Eo + zE1, Eo = E: + E:= - E: ,  and E I  = 2E: + EJx.  The expression for the 
specific heat can now be written as 

W Geertsm and M-L Saboungi 

(A16) 
This or a simplified expression is used in the main text. Note two points about this 
expression. (i) If EI  becomes very negative, this contribution to the specific heat becomes 
negative. In this case the approximate expansion of the binding energies breaks down. 
Note that the prefactor of El in the denominator is z ( l  - z), so when E ,  is negative but 
small this contribution to the specific heat has a maximum for approximately z = 0.5. (ii) 
The prefactor of the last term of (A16) is also z( l  - z )  and so this contribution attains its 
maximum for z = 0.5. This is also the approximate value of the degree of dissociation for 
which the specific heat has a maximum. The composition dependence of the numerator is 
small. The numerator determines the magnitude of the maximum of the specific heat. This 
property can be used in the case where one observes a maximum in the specific heat. This 
ansatz is used in the main text to analyse the specific heat data. 

Appendix B. The Darken stability functlon 

Within the same spirit we can derive the Darken stability function (Darken 1967): 

where the free energy F is given by equation ( A l ) .  This  function is closely related to the 
concentration fluctuations correlation function, given by 

S, = N R T / D .  (B2) 
A straightforward calculation gives for the Darken stability function 

(83) 
with ci = axi/ac, and ai = a*ni/ac az. The derivative (6z/6c) has to be calculated along 
the equilibrium line. An evaluation gives 
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Note that the denominator of this expression is equal to that of the derivative (SzIST) 
derived for the specific heat. The numerator of the last equation is equal to the coefficient 
of (Sz/Sc) in equation (B3). All together we get for the Darken stability function 

f + RT InxiN - RT In&)) + - 
SCSZ 

The first term of this equation for the Darken stability function is the contribution of the 
(salt-like) medium and can be rather large around a salt-like composition: the concentration 
fluctuations are small. The last term is due to the fiuctuations coming from the chemical 
equilibrium, in our case the dissociation of the clusters. This introduces an instability in the 
system. Note that when the specific heat is large due to a small denominator-which can 
be due to a large composition dependence of the binding energy &-the Darken stability 
function decreases. 

Note that the Darken stability function and the specific heat are related: 

S2D 1 S 2 C p  
ST2 T Scz ’ 
- = 

When the specific heat is plotted as a function of composition at constant temperature G, 
the composition with zero curvature is CO; then, when the Darken stability function is plotted 
as a function of temperature at constant composition CO. the zero curvature has to appear 
for TO. 
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